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Abstract. The notion of n-representation infinite algebra is a higher dimensional ana-
logue of representation infinite hereditary algebra. It is known that this algebra can be
obtained as the degree zero part of an (n + 1)-Calabi-Yau algebra with a particularly
nice grading. On the other hand, some 3-Calabi-Yau algebras are obtained from con-
sistent dimer models which are bipartite graphs on the real-two torus. In this article,
we first explain how to give a grading that induces a 2-representation infinite algebra to
the 3-Calabi-Yau algebra arising from a consistent dimer model. Then, we study derived
equivalent classes of 2-representation infinite algebras using perfect matchings of dimer
models and their mutations.
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1. Introduction

The notion of n-representation infinite algebras was introduced in [6] (see Definition 4
for the precise definition). That is a finite dimensional algebra having nice properties from
the viewpoint of higher dimensional Auslander-Reiten theory, and it is an analogue of rep-
resentation infinite hereditary algebras. For example, the Beilinson algebra which is arisen
as the endomorphism ring of the tilting bundle

⊕n
s=0O(s) on Pn is an n-representation

infinite algebra (see [6, Example 2.15]). Also, it is known that this algebra is obtained as
the degree zero part of a bimodule (n + 1)-Calabi-Yau algebra of Gorenstein parameter
1 (see [4, 6, 11]). Some interesting examples of such a construction are given by dimer
models as shown in [4, Section 6].

A dimer model (or brane tiling) Γ is a finite bipartite graph on the real two-torus T,
which induces a polygonal cell decomposition of T. (When we consider the real two-torus
T, we fix the fundamental domain and identify T with R2/Z2.) That is, the set Γ0 of
nodes of Γ is divided into two parts Γ+

0 ,Γ
−
0 , and the set Γ1 of edges consists of the ones

connecting nodes in Γ+
0 and those in Γ−

0 . In order to make the situation clear, we color
nodes in Γ+

0 white, and color nodes in Γ−
0 black. A connected component of T\Γ1 is called

a face of Γ, and we denote by Γ2 the set of faces. In addition, in this article we assume
that a dimer model satisfies the consistency condition (see e.g., [1, 7]), which is a certain
nice condition on a dimer model.
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Then, as the dual of a dimer model Γ, we define the finite connected quiver QΓ = Q.
That is, we assign a vertex of Q dual to each face in Γ2, an arrow of Q dual to each edge in
Γ1, in which case we denote by Q0 the set of vertices of Q and by Q1 the set of arrows of
Q. Here, the orientation of arrows is determined so that the white node is on the right of
the arrow. For example, Figure 1 is a consistent dimer model and the associated quiver,
where the outer frame is the fundamental domain of T.

Figure 1. An example of a dimer model and the associated quiver

Let k be an algebraically closed field of characteristic zero. For the quiver Q associated
with a dimer model, we consider the path algebra kQ. Then, we define certain relations of
Q as follows. By definition of the quiver Q, for each arrow a ∈ Q1 there are precisely two
oppositely oriented cycles containing the arrow a as a boundary. Let p+a and p−a be the
paths from hd(a) around the boundary of such cycles to tl(a). Here, hd, tl : Q1 → Q0 are
maps sending an arrow a ∈ Q1 to the head of a and the tail of a respectively. Then, we
consider the two-sided ideal JQ = ⟨p+a − p−a | a ∈ Q1⟩ of kQ and set AQ = A := kQ/JQ.
We call this algebra A the Jacobian algebra associated with a dimer model.

On the other hand, the notion of perfect matching plays a crucial role in this article.

Definition 1. A perfect matching (or dimer configuration) of a dimer model Γ is a subset
D of Γ1 such that for any node n ∈ Γ0 there is a unique edge in D containing n as the
end point. For a perfect matching D of Γ, we denote by D the subset of Q1 obtained as
the dual of D. We also say that D is a perfect matching of Q.

In general, every dimer model does not necessarily have a perfect matching. If a dimer
model is consistent, then it has a perfect matching and every edge is contained in some
perfect matchings (see e.g., [8, Proposition 8.1]). For example, Figure 2 shows perfect
matchings of the dimer model Γ given in Figure 1.

For a perfect matching D of Q, we define the degree dD on each arrow a ∈ Q1 as

(1.1) dD(a) =

{
1 if a ∈ D,

0 otherwise.

This dD induces the Z-grading on the Jacobian algebra A, and we especially have the
following.

Theorem 2 ([4, Proposition 6.1], see also [3]). Let the notaiton be the same as above.
Then, we see that A is a bimodule 3-Calabi-Yau algebra of Gorenstein parameter 1, that
is, A ∈ perAe and there exists a graded projective resolution P• of A as Ae-module such
that

P• ∼= P∨
• [3](−1)



Figure 2. The perfect matchings of Γ

where Ae := A⊗k A
op and (−)∨ := HomAe(−, Ae).

We define the truncated Jacobian algebra, which is denoted by AD, as the degree zero
part of the graded Jacobian algebra A with respect to dD. The following is the motivating
theorem in this article.

Theorem 3 (cf. [4, Corollary 3.6],[11, Theorem 4.12]). Let A be the Jacobian algebra
associated with a consistent dimer model, and D be a perfect matching of Q. Then, if the
truncated Jacobian algebra AD is finite dimensional, then it is a 2-representation infinite
algebra, in which case the 3-preprojective algebra of AD is A.

Here, we recall the definition of n-representation infinite algebra for an integer n > 0.

Definition 4. We say that a finite dimensional algebra Λ is n-representation infinite if
gl.dimΛ ≤ n and ν−i

n (Λ) ∈ modΛ for all i ≥ 0 (this means ν−i
n (Λ) is quasi-isomorphic

to a complex concentrated in the degree zero part), in which case its global dimension
is precisely n. Here, ν−

n is the auto-equivalence on Db(modΛ) defined by combining the
Nakayama functor ν and the shift functor [n], that is, ν−

n := ν− ◦ [n].

By Theorem 3, in order to construct 2-representation infinite algebras from the quiver
associated with a consistent dimer model, we should understand the next question.

Question 5. When is AD finite dimensional ?

2. On 2-representation infinite algebras arising from dimer models

In this section, we introduce the perfect matching polygon to answer Question 5. First,
for each edge contained in a perfect matching of Γ, we give the orientation from a white
node to a black node. We then fix a perfect matching D0. For any perfect matching D,
the difference of two perfect matchings D − D0 forms a 1-cycle, and hence we consider
it as the element in the homology group H1(T) ∼= Z2. When we consider D −D0 as the
element of H1(T), we denote it by [D −D0]. We then define the lattice polygon

∆Γ := conv{[D −D0] ∈ Z2 | D is a perfect matching of Γ}
as the convex hull of lattice points associated to perfect matchings. We call ∆Γ the perfect
matching (= PM) polygon (or characteristic polygon) of Γ. Although this lattice polygon



depends on the fixed perfect matching, it is determined up to translations because

(2.1) [Di −Dj] = [Di −Dk]− [Dj −Dk]

for any perfect matchings Di, Dj, Dk.

Definition 6. Fix a perfect matching D0. We say that a perfect matching D is

• a corner (or extremal) perfect matching if [D −D0] lies on a vertex of ∆Γ,
• a boundary (or external) perfect matching if [D−D0] lies on a lattice point of the
boundary of ∆Γ,

• an internal perfect matching if [D −D0] lies on an interior lattice point of ∆Γ.

We note that corner, boundary, and internal perfect matchings do not depend on a
choice of the fixed one by (2.1). In addition, if a dimer model is consistent, then there
exists a unique corner perfect matching corresponding to each vertex of ∆Γ (see e.g., [3,
Corollary 4.27], [8, Proposition 9.2]).

For example, we consider the dimer model Γ given in Figure 1, and fix the perfect
matching D0 (see Figure 2). Then, we can easily check that [D1 − D0] = (1, 0), [D2 −
D0] = (0, 1), [D3 − D0] = (−1, 0), [D4 − D0] = (0,−1), and [Di − D0] = (0, 0) for
i = 0, 5, 6, 7, 8. Thus, we have the perfect matching polygon as shown in Figure 3. In
particular, D1, · · · , D4 are corner perfect matchings (and hence boundary ones), and
D0, D5, · · · , D8 are internal ones.

Figure 3. The perfect matching polygon of Γ

Then, we can obtain the next theorem, which was partially discussed in [2, Lemma 1.44].

Theorem 7 (see [12, Theorem 3.6]). Let Q be the quiver associated with a consistent dimer
model Γ. Then, for a perfect matching D of Q, the following conditions are equivalent.

(1) D is an internal perfect matching.
(2) QD is an acyclic quiver, where QD is the quiver obtained by deleting the arrows in

D from Q.
(3) AD is a finite dimensional algebra.

When this is the case, AD is a 2-representation infinite algebra.

3. Mutations of perfect matchings

In the previous section, we saw that an internal perfect matching gives a 2-representation
infinite algebra. In general, there are several internal perfect matching corresponding the
same interior lattice point. Thus, in this section we will investigate the relationship be-
tween such internal perfect matchings.



First, we note that a perfect matching of Q can be considered as a cut in the sense of
[5, 10], and the mutation of cuts, which was also introduced in [5, 10], is important to
understand the relationship between cuts. In the following, we introduce this notion in
terms of perfect matchings, and call it the mutation of perfect matchings.

Definition 8. We say that a vertex k ∈ Q0 is a strict source (resp. strict sink) of (Q,D)
if all arrows ending (resp. starting) at k belong to D and all arrows starting (resp. ending)
at k do not belong to D. Namely, a strict source (resp. strict sink) is a source (resp. sink)
of the quiver QD.

Definition 9. Let Q be the quiver associated with a dimer model, and D be a perfect
matching of Q.

(1) We assume that k ∈ Q0 is a strict source of (Q,D). We define a subset λ+
k (D) of

Q1 by removing all arrows in Q ending at k from D and adding all arrows in Q
starting at k to D.

(2) Dually, we assume that k ∈ Q0 is a strict sink of (Q,D), and define a subset λ−
k (D)

of Q1 by removing all arrows in Q starting at k from D and adding all arrows in
Q ending at k to D.

The following properties follow from the definition.

Lemma 10. Let D be a perfect matching of Q. For a strict source (resp. strict sink)
k ∈ Q0 of (Q,D), we have the followings.

(a) λ+
k (D) (resp. λ

−
k (D)) is a perfect matching of Q.

(b) k is a strict sink of (Q, λ+
k (D)) (resp. a strict source of (Q, λ−

k (D))).
(c) We have that λ−

k (λ
+
k (D)) = D (resp. λ+

k (λ
−
k (D)) = D).

Since λ±
k (D) are again perfect matchings, we call these operations the mutations of a

perfect matching D of Q at k ∈ Q0. We remark that since for an internal perfect matching
D the quiver QD is acyclic (see Theorem 7), we can apply these mutations to D at some
vertices. We also denote by λ+

k (D) (resp. λ−
k (D)) the perfect matching of a dimer model

Γ obtained as the dual of λ+
k (D) (resp. λ−

k (D)), and call this the mutation of a perfect
matching D of Γ at k ∈ Γ2. We say that two perfect matchings are mutation equivalent
if they are connected by repeating the mutations of perfect matchings.

The perfect matchings D0, D5, · · · , D8 given in Figure 2 are internal, and they corre-
spond to the same interior lattice point (see Figure 3). By considering the mutations
at appropriate faces, we see that these are mutation equivalent. This property holds for
more general situation as follows.

Theorem 11 (see [12, Theorem 5.7]). Let Γ be a consistent dimer model. Let D,D′ be
internal perfect matchings of Γ. Then, D and D′ are mutation equivalent if and only if
D and D′ correspond to the same interior lattice point of the PM polygon of Γ.

By combining this theorem with [10, Theorem 3.11], we have the following corollary.

Corollary 12. Let Γ be a consistent dimer model, and ∆Γ be the PM polygon of Γ. Let
Di, Dj be internal perfect matchings of Γ corresponding to the same interior lattice point
of ∆Γ. Then, we have an equivalence of derived categories Db(modADi

) ∼= Db(modADj
).

We note that this statement also follows from [9, Theorem 7.2 and Remark 7.3].
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